
PHYSICAL REVIEW B 100, 125426 (2019)
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We develop a theoretical framework to study the influence of coupling asymmetry on the thermoelectrics of
a strongly coupled SU(N) Kondo impurity based on a local Fermi liquid theory. Applying a nonequilibrium
Keldysh formalism, we investigate a charge current driven by the voltage bias and temperature gradient
in the strong coupling regime of an asymmetrically coupled SU(N) quantum impurity. The thermoelectric
characterizations are made via nonlinear Seebeck effects. We demonstrate that the beyond particle-hole (PH)
symmetric SU(N) Kondo variants are highly desirable with respect to the corresponding PH-symmetric setups
in order to have significantly improved thermoelectric performance. The greatly enhanced Seebeck coefficients
by tailoring the coupling asymmetry of beyond PH-symmetric SU(N) Kondo effects are explored. Apart
from presenting the analytical expressions of asymmetry-dependent transport coefficients for general SU(N)
Kondo effects, we make a close connection of our findings with the experimentally studied SU(2) and
SU(4) Kondo effects in quantum dot nanostructures. Seebeck effects associated with the theoretically proposed
SU(3) Kondo effects are discussed in detail.
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I. INTRODUCTION

The increasing demand of quantum technologies for en-
ergy harvesting has attracted growing attention towards the
necessity for nanomaterial-based energy converters [1]. The
presence of quantization effects in nanoscale systems allows
the controllable comprehension and subsequent control of
underlying transport processes [2]. In addition, nanoscale
systems can offer greatly enhanced thermoelectric response
with respect to conventional bulk counterparts [1–3]. These
properties of nanoscale systems have rekindled the field of
thermoelectricity [4]. Over the past years, several experiments
have resulted in exciting thermoelectric measurements for
nanoscale systems, such as quantum dots (QDs), carbon nan-
otubes (CNTs), quantum point contacts (QPCs), etc. [4–6].
The rapid progress of nanotechnology has allowed the fine-
tuning of nanoscale transport process; nonetheless, complete
understanding of electron interactions on such a small scale
remains the most challenging task [7].

A generic nanodevice consists of a quantum impurity
with intrinsic spin S which is tunnel coupled to two elec-
tron reservoirs, the source and the drain. The low-energy
transport processes are then controlled by the strong inter-
action between localized spin S and itinerant electrons in
the reservoirs. The spin S = 1/2 impurity interacting with a
single orbital channel of conduction electrons forms a fully
screened ground state resulting in quasiparticle resonances
at the Fermi level. This paradigmatic screening phenomenon
is termed the Kondo effect [8], which is characterized by
a low-energy scale TK , the Kondo temperature. The many-
body Kondo resonance at the Fermi level opens an effective
path towards the enhancement of thermoelectric production
at the nanoscale level [9]. Recent experiments [10–15] have
further expanded the scope of transport measurements in
Kondo-correlated nanoscale systems. Most of these studies

have been focused on the transport measurement for the spin
S = 1/2 Kondo impurity described by the SU(2) symmetry
group. However, the conventional SU(2) Kondo effects, being
protected by particle-hole (PH) symmetry, offer vanishingly
small thermoelectric conversion [7]. To achieve appreciable
thermopower, the occupation factor of the quantum impu-
rity should be integer, while the PH symmetry should be
lifted [16]. The SU(N) Kondo model with integer occupancy
m offers the possibility of avoiding a half-filled regime so as
to achieve the enhanced thermoelectric production over the
conventional SU(2) Kondo-correlated systems [16–18].

The orbital degeneracy of the quantum impurity com-
bines with the true spin symmetry to form the Kondo ef-
fect described by higher symmetry group SU(N). Here the
occupancy factor m takes all possible values starting from
1 to N−1. The paradigmatic SU(4) Kondo physics has
been experimentally studied in CNTs [12,19–23], double
QDs [24], and single-atom transistors [25]. Various theoretical
works [26–31] have contributed towards better understanding
of SU(4) Kondo physics over the past years. In addition,
exciting proposals have been put forth for the experimental
realization of different variants of SU(N) Kondo systems.
Possible realization of SU(3) Kondo effects using triple QDs
with three- and four-edge states of the quantum Hall effects
was suggested in Ref. [32], which been verified recently using
a numerical renormalization group study [33]. The proposals
for the solid-state realization of SU(6) [34] and SU(12) [35]
Kondo effects have likewise attracted considerable attentions
both theoretically and experimentally. Beside obtaining the
solid-state realization of these exotic SU(N) Kondo effects,
an increasing effort has been put into their cold atomic real-
ization [36–39].

Most of the previous studies on SU(N) Kondo effects
have been focused solely on charge current measurements.
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However, thermoelectric characterization in a generic nan-
odevice usually involves the Seebeck effects. To the best of
our knowledge very few studies have tried to uncover the
thermoelectric measurements of Kondo effects described by
higher symmetry group. The Seebeck effects with a SU(4)
Kondo effect have been studied in Ref. [17], and a general
theoretical framework for thermoelectric transport of a SU(N)
Kondo model has been developed recently in Ref. [16]. These
studies are limited to the setup with perfectly symmetrical
tunnel coupling, which is very rarely the case of an exper-
iment. In fact, junction asymmetry could provide important
information about the underlying many-body effects [40]
and, thus, has to be taken into account in any calculation to
compare its result with the experimental data [41]. Therefore
unveiling the effects associated with the coupling asymmetry
towards the thermoelectric characterization, the Seebeck ef-
fects, of a SU(N) Kondo effect has remained a challenging
problem for many years. In this contribution we develop a
theoretical framework based on a local Fermi-liquid theory
in combination with the out-of-equilibrium Keldysh approach
to study the influence of coupling asymmetry on the ther-
moelectric transport of a strongly coupled SU(N) Kondo
impurity.

The paper is organized as follows. In Sec. II we discuss
in detail the formulation of the model, for thermoelectric
transport calculations at the strong-coupling regime of SU(N)
Kondo effects, capturing the effects of coupling asymmetry
and arbitrary temperature and chemical potentials of the elec-
tron reservoirs. We outline the charge current calculations for
a SU(N) Kondo impurity which account for both elastic and
inelastic effects using the nonequilibrium Keldysh formalism
in Sec. III. Section. IV is devoted to the summary of our results
for the thermoelectric transport coefficients of SU(N) Kondo-
correlated systems characterizing the nonlinear Seebeck ef-
fects. In this section, apart from presenting the analytical
expressions of coupling asymmetry-dependent transport coef-
ficients for general SU(N) Kondo effects, we make a separate
analysis of thermoelectrics with (1) experimentally studied
SU(2) and SU(4) Kondo effects and (2) theoretically proposed
SU(3) Kondo effects. Section V contains the conclusion of our
work together with possible future research plans based on the
present work.

II. MODEL DESCRIPTION

We consider a quantum impurity tunnel coupled to two
conducting reservoirs as shown in Fig. 1. The impurity pos-
sess N-fold degeneracy by combining the spin and other de-
grees of freedom, such as the orbital degeneracy. In addition,
there are N species (orbitals) of electrons in both the left
(L) and right (R) reservoirs. The rotation of the reservoir’s
electrons is then described by the SU(N) transformation.
Therefore, to describe our system we start from the SU(N)
impurity Anderson model [42,43],

H =
∑
k,r

εk[c†
L,krcL,kr + c†

R,krcR,kr] + Himp + Htun. (1)

Here we introduce the notation “r” to represent the orbital
index that takes all possible values starting from 1 to N . The
operator c†

γ ,kr creates an electron with momentum k in the rth

FIG. 1. Upper panel: Schematic representation of an experimen-
tal setup for investigating Seebeck effect in nanostructures, where
a SU(N) quantum impurity is sandwiched between two conducting
reservoirs. The left (red) and right (blue) reservoirs are in thermal
equilibrium, separately, at temperature TL and TR, respectively. The
tunneling-matrix elements from the impurity to the left and right
reservoirs are characterized by tL = t cos θ and tR = t sin θ with
θ ∈ (0, π/2). Lower panel: The asymmetry of the tunneling junction
is accounted for by introducing a parameter C ≡ (�L − �R )/(�L +
�R ) = cos 2θ with �L/R = πρres|tL/R|2, ρres being the density of
states of the reservoirs. The magenta line represents the variation
of asymmetry parameter C with respect to the asymmetry angle
θ . We choose the Fermi level in such a way that the chemical
potentials of the left and right reservoirs take some specific values
μL/R = ± e�V

2 (1 ∓ C). This choice of chemical potentials amounts
to greatly simplifying the calculation of the charge and heat current
through a strongly coupled Kondo impurity (see text for details).
These chemical potentials are represented by the red and blue curves,
respectively.

orbital of the γ (= L, R) reservoir. The energy of conduction
electrons εk is measured with respect to the chemical potential
μ. The second term of Eq. (1) represents the Hamiltonian of
the impurity possessing N degenerate flavors with a single
energy level εd . Then we write the impurity Hamiltonian as

Himp = εd

∑
r

d†
r dr + U

∑
r<r′

d†
r drd

†
r′dr′ , (2)

where d†
r is the electron creation operator of the impurity and

U represents the charging energy, which is assumed to be the
largest energy scale of the model. The tunneling processes
from the impurity to the reservoirs are accounted for by the
very last term of Eq. (1),

Htun =
∑
k,r

(tLc†
L,kr + tRc†

R,kr )dr + H.c. (3)

We explicitly assume the tunneling asymmetry by assigning
the tunneling-matrix elements tγ such that tL = t cos θ and
tR = t sin θ with θ∈(0, π/2). Then the intrinsic total local
level width associated with the tunneling is given by �γ =
πρres|tγ |2 with ρres being the density of states of the reservoirs.
For the sake of clarity, we introduce the parameter C ≡ (�L −
�R)/(�L + �R) = cos 2θ to characterize the asymmetry of
the tunneling junction. This asymmetry further appears in
the Glazman-Raikh rotation [44] of Eq. (1) in the basis of
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reservoir’s electrons(
bkr

akr

)
=
(

cos θ sin θ

sin θ − cos θ

)(
cL,kr

cR,kr

)
. (4)

Note that the transformation (4) effectively decouples the
operators akr from the impurity degrees of freedom. Here
we consider the general case of having an arbitrary number
of electrons m = 1, 2, . . . , N − 1 in the impurity. Therefore,
the specific choice of impurity level εd = U (1−m−m/N )
provides the fundamental representation with

∑
r d†

r dr ≡∑
r nr = m. We then perform the Schrieffer-Wolff transforma-

tion [45] followed by the rotation (4) of the Hamiltonian (1)
to project out the charge states, which results in

H =
∑
k,r

εk (a†
krakr + b†

krbkr ) + HKondo. (5)

The Kondo Hamiltonian is expressed in terms of antiferro-
magnetic coupling JK between the impurity spin �S and the
spin operator of reservoir electrons placed at the origin �T
as [40,46,47]

HKondo = JK �S · �T , JK = t2

U

N2

m(N − m)
. (6)

The N2−1 traceless components of impurity spin S i(i =
1, 2 . . . , N2−1) are given by S r,r′ = d†

r dr′−m/Nδr,r′ with the
constraint r, r′ �=N, N ′. Likewise, the spin operator of reser-
voir electrons placed at the origin is expressed as �T =∑

kk′,rr′ b†
kr


i
rr′bk′r′ , �i being the N × N generators of SU(N)

group. Note that S i are N!
m!(N−m)! × N!

m!(N−m)! matrices acting on
states with m electrons.

The ground state of the spin S = 1/2 SU(N) impurity con-
sidered in this work is characterized by the complete screening
of the impurity spin, which results in the formation of the
Kondo singlet. The low-energy regime of the fully screened
Kondo effect is consistently described by FL theory [48–50].
Applying the standard point-splitting procedure [16,40,47,49]
to the Hamiltonian (6) imparts the low-energy FL Hamiltonian
of the SU(N ) Kondo impurity,

H0 = ν
∑

r

∫
ε

ε[a†
εraεr + b†

εrbεr],

Hel = −
∑

r

∫
ε1−2

[ α1

2π
(ε1+ε2)+ α2

4π
(ε1+ε2)2

]
b†

ε1rbε2r, (7)

Hint =
∑
r<r′

∫
ε1−4

⎡
⎣ φ1

πν
+ φ2

4πν

4∑
j=1

εj

⎤
⎦:b†

ε1rbε2rb
†
ε3r′bε4r′ :.

The PH-symmetric version of Eq. (7) was originally proposed
by Nozieres [48] and is commonly known as Nozieres FL
theory. In Eq. (7) the density of states per species for a
one-dimensional channel is represented by the symbol ν. The
scattering (elastic) effects in the FL are accounted for by the
Hamiltonian Hel, where α1 and α2 are the first and second
generations of Nozieres FL coefficients, respectively. The four
fermions term represents the interaction part of the Hamilto-
nian Hint, which is expressed in terms of FL parameters φ1

and φ2. These FL parameters are related to the associated
Kondo temperature of the corresponding SU(N) impurity.

The FL parameters characterizing the scattering effects are
connected to those of the interaction effects by the relation
α1 = (N−1)φ1 and α2 = (N−1)φ2/4. In addition the Bethe
ansatz provides a further link between α1 and α2 [40,47],

A ≡ α2

α2
1

= N − 2

N − 1

�(1/N ) tan(π/N )√
π�

(
1
2 + 1

N

) cot
[mπ

N

]
, (8)

where �(x) is the Euler’s gamma function. Therefore the low-
energy FL Hamiltonian (7) is completely specified by only
one FL parameter, say, α1. We make a connection of α1 with
the corresponding Kondo temperature such that T SU(N )

K =
1/α1, and the N dependence in FL parameters is implicit. Note
that we have retained up to the four fermions term in Eq. (7);
the higher-order terms produce the current correction beyond
cubic order in the applied bias and temperature gradient,
which is beyond the scope of present work.

It is then a straightforward procedure to proceed with the
calculation of physical observables by treating the scattering
Hamiltonian Hel and interaction part Hint perturbatively.
However, in the spirit of Nozieres phenomenology, the scat-
tering effects are fully described by an energy-dependent
phase shift δel

r (ε). The Kondo singlet acts as the scatterer
for the incoming electrons from the leads. Outgoing and
incoming electrons then differ from each other by the elastic
phase shift δel

r (ε). The Nozieres FL parameters α1 and α2 are
the first- and second-order coefficients in the Taylor-series
expansion of the elastic phase shift. While the scattering
effects are easily accounted for by the elastic phase shift,
the perturbative treatment of Hint produces complicated self-
energy diagrams. This complication can be simplified a bit by
including the Hartree contribution of self-energy in the elastic
phase shift [40,47]. Then the Taylor expansion of the phase
shift reads

δr (ε) = δ0 + α1ε + α2ε
2 −

∑
r′ �=r

{
φ1

∫ ∞

−∞
dεδnr′ (ε)

+ φ2

2

[
ε

∫ ∞

−∞
dεδnr′ (ε) +

∫ ∞

−∞
dεεδnr′ (ε)

]}
. (9)

Here the zero-energy phase shift of the SU(N) Kondo impu-
rity with m electrons is

δ0 = mπ

N
. (10)

In Eq. (9) we used the definition of the actual FL quasipar-
ticle distribution relative to the Fermi energy εF as δnr (ε) ≡
nr (ε) − �(εF − ε) = 〈b†

krbkr〉 − �(εF − ε), � being the step
function. Using Eq. (4) we expressed the average 〈b†

krbkr〉
in terms of the equilibrium Fermi-distribution functions

fγ (ε) = [1 + exp ( ε−μγ

Tγ
)]

−1
of the left and right reservoirs,

and 〈b†
krbkr〉 = cos2 θ fL + sin2 θ fR. In addition, we have im-

plemented the specific choice of Fermi level such that∫ ∞

−∞
dεδnr (ε) = 0. (11)

This equation is always satisfied as far as the condition
μL cos2 θ + μR sin2 θ = εF is fulilled. We then made the
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following specification for the chemical potentials of the
reservoirs:

μL = e�V sin2 θ ≡ e�V

2
(1 − C), (12)

μR = −e�V cos2 θ ≡ −e�V

2
(1 + C), (13)

to make εF = 0. It is also noted that the details related to the
choice of the temperatures in the reservoirs do not affect the
necessary condition to satisfy Eq. (11). To be more general,
we do not yet impose any restriction on the choice of TL

and TR. Using these specifications of chemical potentials and
temperatures of the reservoirs, the straightforward integration
of the phase shift expression (9) leads to

δr (ε) = δ0 + α1ε + α2(ε2 − A). (14)

To obtained Eq. (14) we have made the use of FL identity
α2 = (N−1)φ2/4 and the new definition,

A = 1

6

[
(πTL)2(1+C)+(πTR)2(1−C)+3

2
(1−C2)(e�V )2

]
.

In the following section the scattering effects in addition to
the Hartree contribution to the self-energy correction will be
accounted for by Eq. (14). To obtain the self-energy correc-
tion beyond the Hartree contribution we will be treating the
interaction Hamiltonian Hint perturbatively with the small
parameters (e�V, TL, TR)/T SU(N )

K .

III. CURRENT CALCULATION

The nonlinear Seebeck coefficient, the central object of this
work, directly follows from the solution of the zero charge
current condition (see Sec. IV). The charge current in the
SU(N) Kondo regime consists of two parts: the elastic and
inelastic. While the elastic effects are accounted for by the
scattering phase shift, inelastic corrections have to be treated
perturbatively as illustrated earlier. Therefore, to proceed fur-
ther with the calculation, one needs to have an expression
of an operator representing the charge current. Though there
exist several possible ways of writing the charge current [40],
we use the the basis of scattering states that includes the elastic
effects and Hartree term to write the charge current operator
in the form [40,51]

Î = e

2hν

∑
r

sin 2θ [a†
r (x)br (x)−a†

r (−x)E br (−x)+H.c.],

(15)
for br (x) = ∑

k bkreikx and E br (x) = ∑
k Ekbkreikx. To write

Eq. (15) we have also omitted the terms of the form∑
r,p=± pa†

r (px)ar (px) since they do not produce a finite
contribution to the mean current. In addition, we expressed
the N × N scattering matrix Ek in terms of the phase shift
expression (14) such that Ek = exp[2iδr (εk )]. To compute the
various observables from Eq. (15) we need the following
averages directly obtained from the Glazman-Raikh rotation:⎛

⎜⎝
〈b†

kbk〉
〈a†

kak〉
〈b†

kak〉

⎞
⎟⎠ =

⎛
⎜⎝

cos2 θ sin2 θ 0

sin2 θ cos2 θ 0
sin 2θ

2 − sin 2θ
2 0

⎞
⎟⎠
⎛
⎝ fL(εk )

fR(εk )
0

⎞
⎠. (16)

The average of Eq. (15) provides the elastic current (including
the corresponding Hartree contribution), which has the com-
pact form analogous to the Landauer-Büttiker expression

Iel = e

h

N∑
r

∫ ∞

−∞
dε Tr (ε)[ fL(ε) − fR(ε)]. (17)

The effective transmission coefficient Tr (ε) is com-
pletely specified by the phase shift expression (14);
Tr (ε)≡(1 − C2) sin2[δr (ε)]. To write Tr (ε) into a more
tractable form, we perform its Taylor expansion in energy and
retain up to the second-order terms,

Tr (ε) = (1 − C2)
[
T0 − α2A sin 2δ0 + α1 sin 2δ0 ε

+(
α2

1 cos 2δ0 + α2 sin 2δ0
)
ε2
]
. (18)

Here T0 = sin2 δ0 is the zero energy transmission coefficient.
Then it is a trivial procedure to compute the elastic current
by plugging Eq. (18) into Eq. (17). The exact computation
of Eq. (17) follows from the consideration of the following
integrals [51,52]:

Kn =
∫ ∞

−∞
εn [ fL(ε) − fR(ε)] dε, n = 0, 1, and 2. (19)

The conventional way of calculating the integrals in Eq. (19)
consists of Sommerfeld expansion of � f (ε) ≡ fL(ε) − fR(ε)
in the small parameters �T ≡TL−TR and �V . However, the
Fourier-transform technique allows us to compute Eq. (19)
exactly. Fourier transforming the function � f (ε) into real
time reads

� f (t ) = 1

2π

∫ ∞

−∞
dε e−iεt� f (ε). (20)

Performing the n-times partial differentiation of Eq. (20) and
taking the limit t→0 we get

2π

(−i)n

∂n� f (t )

∂tn

∣∣∣∣
t=0

=
∫ ∞

−∞
dεεn� f (ε). (21)

Fourier transformation of the Fermi distributions of the left
and right reservoirs allows us to write

� f (t ) = i

2

[
TLe−iμLt

sinh(πTLt )
− TRe−iμRt

sinh(πTRt )

]
. (22)

Plugging Eq. (22) into Eq. (21) with the chemical potentials
as specified in Eqs. (12) and (13), we obtain K0 = e�V , K1 =
[(πTL)2−(πTR)2−3C(e�V )2]/6, and

K2 = e�V

3

[
(e�V )2

4
(1 + 3C2) + 1−C

2
(πTL)2

+1 + C
2

(πTR)2

]
.

For completeness we reexpress the elastic current in terms of
the integrals in Eq. (19) as

Iel = Ne(1 − C2)

h

[
(T0 − α2A sin 2δ0)K0 + α1 sin 2δ0K1

+(
α2

1 cos 2δ0 + α2 sin 2δ0
)
K2

]
. (23)
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Now we turn to the discussion of inelastic effects leaving
aside the Hartree contributions, which has been already ac-
counted for by the phase shift expressed in Eq. (14). As we an-
ticipated earlier, the perturbative treatment of Hint imparts the
interaction corrections to the charge current. This approach
requires the expressions of noninteraction Green’s functions
(GFs) described by H0. The matrices of the noninteracting
GFs in Keldysh space [53] are given by

Gbb/aa(k, ε) = 1

ε − εk
τz+iπ

(
Fb/a Fb/a+1

Fb/a−1 Fb/a

)
δ(ε − εk ),

Gba/ab(k, ε) = iπ

(
1 1
1 1

)
Fab δ(ε − εk ). (24)

Here the parameters Fb/a(ε) and Fab(εk ) are expressed in
terms of different populations; Fb(εk ) = 2〈b†

kbk〉−1, Fa(εk ) =
2〈a†

kak〉−1 and Fab = 2〈b†
kak〉. The z-component of the Pauli

matrix is represented by τz. However, in the flat-band limit
only the off-diagonal parts of Gbb(k, ε), namely, G+−

bb (k, ε)
and G−+

bb (k, ε), produce the finite contribution to the charge
current. The straightforward mathematical steps provide the
following Fourier-transformed real-time GFs:

G+−
bb (t ) = −πν

2

[
TL(1+C)e−iμLt

sinh(πTLt )
+TR(1−C)e−iμRt

sinh(πTRt )

]
,

Gab/ba(t ) = −πν

2

√
1 − C2

[
TLe−iμLt

sinh(πTLt )
− TRe−iμRt

sinh(πTRt )

]
.

(25)

Here G+−
bb (t ) and G−+

bb (t ) are connected by causality relations.
In practice, the GFs expressed in Eqs. (24) and (25) are
sufficient for the calculation of the charge current. To calculate
the inelastic correction to the charge current we then apply the
perturbation theory using the Keldysh formalism [53],

δIin = 〈
TCÎ (t )e−i

∫
dt ′Hint (t ′ )〉, (26)

where C denotes the double-sided η = ± Keldysh contour
and TC is corresponding time-ordering operator. We used the
expression of the charge current operator (15) and interaction
Hamiltonian Hint into Eq. (26) to obtain the interaction cor-
rection to the charge current

δIin = Z

∫ ∞

−∞

dε

2π
(�−+ − �+−)(ε)iπν� f (ε). (27)

To arrive from Eq. (26) to Eq. (27) we have already sub-
tracted the diverging terms, which amounts to the renor-
malization of FL coefficients (see Ref. [40] for details).
In addition, we introduced the new notation via Z =
N (N−1)

h eπ (1 − C2) cos 2δ0. The self-energies in Eq. (27) are
expressed in real time as

�η1η2 (t ) =
(

φ1

πν2

)2 ∑
k1−3

[
Gη1η2

bb (k1, t )

×Gη2η1
bb (k2,−t )Gη1η2

bb (k3, t )
]
. (28)

For the calculation of self-energies, now we specify the
temperatures of the left and right reservoirs TR = T and TL =
T +�T with �T >0. In practice one can numerically solve
for the self-energy using the GFs of Eq. (25). However, it is

manageable to find the analytical expression of the self-energy
difference to the first order in �T and second order in e�V ,
which reads

(�−+−�+−)(ε) = φ2
1

iπν

[
3

4
(e�V )2(1 − C2) + ε2 + (πT )2

+�T

T
(πT )2(1+C)

]
. (29)

To arrive from Eq. (28) to Eq. (29) we came across the integral
of the form

Z (a, T ) =
∫ ∞

−∞

eiat

sinh3(πT t )
dt . (30)

The singularity of the integral in Eq. (30) is removed by
shifting the time contour by iη, η → 0 in the complex
plane. The parameter η is chosen such that ηD1 and
(ηT, η�T, η�V ) � 1 with D the band cutoff. We chose the
rectangular contour enclosing the singularity at t = 0 and use
Cauchy’s residue theorem to arrive at the result

Z (a, T ) = −iπ
a2 + (πT )2

(πT )2

1

exp(a/T ) + 1
. (31)

Equation (29) contains all possible terms up to the linear
response in �T and �V . Therefore plugging Eq. (29) into
Eq. (27) provides an interaction correction up to the quadratic
order in �T and �V . To make interaction contributions to the
charge current more symmetrical with that of elastic effects,
we write

δIin = Ne(1 − C2)

h

1

2

1

N − 1
cos 2δ0 α2

1

×
{
K2 +

[
�T

T
(πT )2(1 + C) + (πT )2

]
K0

}
. (32)

This equation correctly reproduces the interaction correction
up to the quadratic response with the coefficients K0,2 given in
Eq. (19). Using Eqs. (23) and (32), the charge current is given
by

Ic = Iel + δIint. (33)

IV. RESULTS AND DISCUSSION

The nonlinear Seebeck effect is quantified by the Seebeck
coefficient defined as the ratio of thermovoltage developed
under the condition of zero charge current, �Vth ≡ �V |Ic=0,
to the applied temperature gradient [54,55],

S ≡ − �Vth

TL − TR

∣∣∣∣
Ic=0

. (34)

In fact, the Seebeck coefficient Eq. (34) contains additional
information than the electrical and thermal conductance mea-
surements [56]. While the electrical conductance depends
merely on the density of states at the Fermi level, the Seebeck
coefficient reveals its slope [57]. In addition, the Seebeck
coefficient provides the useful information related to the av-
erage energy of charge carriers contributing to the transport
processes [58]. We characterize the Seebeck coefficient of a
SU(N) Kondo impurity by defining the dimensionless form
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of the charge current accounting for up to the quadratic
responses,

J (N, m) ≡ Ic(N, m)

G0(N )T SU(N)
K

= L 1
1 �V +L 1

2 �T +L 2
1 �V

2+L 2
2 �T

2

+ L 11
12 �V �T . (35)

The maximum conductance of the SU(N) Kondo impurity
in the presence of asymmetry is expressed by the relation
G0(N ) = (1 − C2)Ne2/h. From now we use the electronic
charge e = −1 and the convention �V >0 and �T > 0. The
quantities written in overline letters represent that they are
normalized with the corresponding Kondo temperature: T ≡
T/T SU(N)

K , �T ≡ �T/T SU(N)
K , and �V ≡ �V/T SU(N)

K . From
Eqs. (23) and (32) we obtained the transport coefficients L i

j

and L 11
12 , i, j = 1, 2 for the SU(N) Kondo impurity,

L 1
1 =

[
sin2

(πm

N

)
+ 1

3

N + 1

N − 1
cos

(
2πm

N

)
(πT )2

]
,

L 1
2 = −π2

3
T sin

(
2πm

N

)
, L 2

1 = 1

2
C sin

(
2πm

N

)
,

(36)

L 2
2 = −π2

6
sin

(
2πm

N

)
,

L 11
12 = −π2

3
T

[
B cos

(
2πm

N

)
+ 2CA sin

(
2πm

N

)]
.

The coefficient A is defined in Eq. (8), and B stands for

B ≡ C(N − 2) − N − 1

N − 1
. (37)

Equation (36) shows that the transport coefficients account-
ing for the linear and quadratic correction in the temper-
ature gradient are connected by the relation L 1

2 = 2T L 2
2 .

It is apparent that merely the asymmetry of the junction is
responsible to have the quadratic correction in the voltage
bias. For half-filled SU(N) Kondo effects, we observed that
L 1

2 = L 2
1 = L 2

2 = 0; therefore, corresponding thermoelec-
tric properties are governed by only two coefficients L 1

1 and
L 11

12 . This fact explains that the half-filled SU(N) Kondo im-
purity does not offer finite thermopower even in a quadratic-
response level of calculations. Another important conclusion
that can be drawn form Eq. (36) is as follows; for the perfectly
symmetrical quarter-filled SU(N) Kondo-correlated systems,
the combined effects of temperature gradient and voltage
bias tend to vanish: L 11

12 |C=0(N, N/4) = 0. Furthermore, the
coefficients characterizing the voltage response do not ac-
quire the temperature correction. These facts should make the
nonlinear thermoelectric measurement of beyond half-filled
SU(4) systems a trivial procedure. To have more insights
into the thermoelectric production in SU(N) Kondo systems,
we solve the zero current condition of Eq. (35) to get the
thermovoltage up to the quadratic terms in �T ,

−�V th = SLR�T + δS (�T )2 + O(�T )3. (38)

The Seebeck coefficient S as defined in Eq. (34) then takes
the form

S = SLR + δS�T + O(�T )2. (39)

Here SLR is the linear response Seebeck coefficient, and its
first-order �T correction is defined by δS ,

SLR ≡ L 1
2

L 1
1

, (40)

δS ≡
[

L 2
2

L 1
1

− L 1
2 L 11

12(
L 1

1

)2 +
(
L 1

2

)2
L 2

1(
L 1

1

)3

]
. (41)

The transport coefficients defining the linear response See-
beck coefficient SLR are independent of asymmetry parameter
C. However, the first-order correction δS bears the strong
dependences on the asymmetry parameter via the transport
coefficients L 2

1 and L 11
12 . In addition, for the symmetrical

setups, we use Eq. (36) to express the correction factor δS
entirely in terms of linear-response coefficients,

δS|C=0 = SLR

T

[
sin2

(
πm
N

)
L 1

1

− 1

2

]
. (42)

To study the effects of coupling asymmetry on the thermo-
electric transport properties, we categorize the SU(N) Kondo
impurity into two broad classes, namely, half-filled (PH-
symmetric) and beyond half-filled, and discuss them sepa-
rately.

A. PH-symmetric SU(N) Kondo effects

The low-energy regime of the SU(N) Kondo effects with
the half-filling m = N/2 is protected by the emergent PH sym-
metry; an example includes the conventional SU(2) Kondo
effect. In these systems, the zero energy phase shift reaches
the unitary value δ0 = π/2 resulting in the maximal conduc-
tance. While the PH symmetry is responsible for enhanced
electronic properties, the corresponding thermoelectric trans-
port coefficient gets suppressed due to the effect of a highly
symmetrical transmission coefficient. As we anticipated ear-
lier that the half-filled Kondo effects satisfy the relation
L 1

2 = L 2
1 = L 2

2 = 0, therefore, corresponding thermoelec-
tric properties are derived solely from the coefficients L 1

1
and L 11

12 . The nonzero transport coefficients of PH-symmetric
SU(N) Kondo effects are summarized as

L 1
1 (N, N/2) =

[
1 − 1

3

N + 1

N − 1
(πT )2

]
, (43)

L 11
12 (N, N/2) = 1

3T

[C(N − 2) − N − 1

N − 1

]
(πT )2. (44)

While for the conventional SU(2) Kondo effects the parameter
C does not affect the cross-coefficient, the corresponding
measurement in SU(N > 2) PH-symmetric systems depends
on the coupling asymmetry.

The PH symmetry of the Kondo impurity realized in QDs
is exact only if the dot is tuned to the middle of Coulomb
valley [59]. This indicates the possibility of breaking the un-
derlying PH symmetry. This weakly broken PH symmetry of
Kondo-correlated systems is accounted for by renormalizing
the reference phase shifts such that [60–62]

δ0 → δ̃0 = δ0 + δP, δ0  δP. (45)
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FIG. 2. Linear (LR) and nonlinear (BLR) Seebeck coefficients
with PH-symmetric SU(2) and SU(4) Kondo effects for a fixed value
of the potential scattering δP.

This potential scattering provides the repulsive interactions
which breaks the Kondo singlet and contributes to inelas-
tic processes [63]. The first-order transport coefficients in
Eq. (36) for PH-symmetric Kondo-correlated systems with an
account of the potential scattering effects are then given by

L 1
1 (N, N/2)|P = cos2 δP

[
1− (πT )2

3

N+1

N−1

2 cos 2δP

1+ cos 2δP

]
,

L 1
2 (N, N/2)|P = cos2 δP

[
(πT )2

3T

2 sin 2δP

1 + cos 2δP

]
. (46)

Equation (46) allows us to compute the linear response See-
beck coefficient of PH-symmetric SU(N) Kondo effects with
small potential scattering,

SLR(N, N/2)|P = 2

3

1

T

(πT )2

1 − (πT )2

3
N+1
N−1

δP + O(δP)3. (47)

Note that due to the numerical factor (N+1)/(N−1) in the
denominator of Eq. (47), among PH-symmetric generaliza-
tions of SU(N) the SU(2) Kondo-correlated systems offer the
highest value of the linear response Seebeck coefficient in the
presence of finite potential scattering. Plugging Eq. (45) into
the transport coefficients Eq. (36) and using them in Eq. (41),
we get the first-order correction to the Seebeck coefficient up
to the linear order in δP,

δS (N, N/2)|P = π2

3

1− (πT )2

3

(
N+1
N−1+2B

)
[
1− (πT )2

3
N+1
N−1

]2 δP+O(δP)3. (48)

For SU(2) Kondo effects the correction (48) is independent of
the asymmetry parameter as can be inferred from Eq. (37).
However, for SU(4) and other PH-symmetric versions of
SU(N), the first-order correction to the Seebeck effect is
weakly asymmetry dependent via the coefficient B(C). The
linear and nonlinear Seebeck coefficients with PH-symmetric
SU(2) and SU(4) Kondo effects are shown in Fig. 2 with the
choice of potential scattering term δP = 0.1 and temperature
gradient �T = 0.05. These significant enhancements of BLR
Seebeck coefficients with respect to the corresponding LR
contribution get further improved at a relatively high reference
temperature and large temperature drop across the junction.

B. Beyond half-filled SU(N) Kondo effects

The SU(N) Kondo effect with an arbitrary integer filling
factor m < N offers the possibility of avoiding an undesir-

able PH-symmetric regime for the enhanced thermoelectric
coefficient. The Kondo physics beyond the half-filled regime
m/N �= 1/2 is described by the asymmetric shape of the trans-
mission coefficient, which is highly desirable to achieve huge
thermopower production. In general, the Kondo-correlated
systems with N > 2 provide the realization of paradigmatic
PH-asymmetric setups. In particular, the experimentally stud-
ied SU(4) Kondo effect consisting of either a single electron or
three electrons would, thus, represents an ideal test bed for the
study of beyond half-filled Kondo physics. The special case
of the SU(3) Kondo effect can fulfill the two filling condi-
tions m/N = 1/3 or 2/3 both away from the PH-symmetric
regime. Considering that, we first start from the SU(3) Kondo
effects, and this subsection will be devoted to a discussion of
the SU(4) Kondo regime.

The SU(3) Kondo effect can occur with either a single
electron or two electrons. The physics of the SU(3) Kondo
effect with one and two electrons is related with each other
by a PH symmetry transformation. Therefore, we discuss the
single-electron SU(3) Kondo systems, which will ultimately
provide the corresponding information of the two-electron
case. For single-electron SU(3) Kondo effects the transport
coefficients in Eq. (36) are simplified as

L 1
1 (3, 1) = 3

4

[
1 − 4

9
(πT )2

]
, L 1

2 (3, 1) = −π2T

2
√

3
,

L 2
1 (3, 1) = C

√
3

4
, L 2

2 (3, 1) = − π2

4
√

3
, (49)

L 11
12 (3, 1) = −π2

3
T

{
C
4

(
1 − 2

√
3

π

�[1/3]

�[5/6]

)
− 1

}
.

Therefore while the cross coefficient L 11
12 (3, 1) is weakly

asymmetry dependent, the coefficient L 2
1 (3, 1) is strongly

influenced by C. Since all the transport coefficients in Eq. (49)
are nonzero, one can solve the zero-current equation to get the
thermovoltage developed in SU(3) Kondo effects.

The SU(4) Kondo effects can accommodate up to three
electrons. While the two-electron case suffers from the PH
symmetry, the single- and three-electron SU(4) systems are
regarded to have good thermoelectric performance. Further-
more, the single- and three-electron systems are related to
each other by the PH symmetry transformation. Therefore we
discuss in details about the thermoelectric of single-electron
SU(4) Kondo effects. The corresponding transport coefficients
are obtained as

L 1
1 (4, 1) = 1

2
, L 1

2 (4, 1) = −π2

3
T , L 2

1 (4, 1) = C
2
,

L 2
2 (4, 1) = −π2

6
, L 11

12 (4, 1) = −4π2CT

9
√

π

�[1/4]

�[3/4]
. (50)

The cross coefficient L 11
12 (4, 1) � −7.32CT is very large as

compared to other coefficients for a relatively large asym-
metry parameter. In addition the other coefficient L 2

1 (4, 1)
is also strongly asymmetry dependent. The presence of these
coefficients is solely manifested by the finite asymmetry of
the junction. Therefore we argue that measuring this cross
coefficient would be useful while identifying the asymmetry
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LR

FIG. 3. Left panel: Plot of asymmetry-dependent zero current
lines in PH-asymmetric SU(4) Kondo effects within the qudratic
response level of calculations as a function of applied voltage bias
and temperature gradient at reference temperature T = 0.1. Right
panel: Corresponding Seebeck coefficients for given asymmetry
parameter.

of the junction in addition to its physical implications. Just
from the structure of Eq. (50), it is seen that the thermoelec-
tric transport properties of beyond half-filled SU(4) Kondo
effects can be easily manipulated by tuning the junction
asymmetry. It appears that the effect of asymmetry becomes
more pronounced in a relatively high-temperature gradient
regime. The asymmetry parameter C mainly causes the shift
of the zero-current line either upward or downward with
respect to the perfectly symmetric setup. As shown in Fig. 3
the positive value of the asymmetry parameter increases the
thermovoltage, while the opposite effects are apparent for the
corresponding negative values. In addition, the beyond linear
response contribution always overshoots the corresponding
linear response value irrespective of the coupling asymmetry.

C. Paradigmatic SU(4) Kondo effects

The cosine factor cos 2δ0 in front of the expression of
the inelastic current dramatically modifies the low-energy
transport behavior of SU(N) Kondo effects. In the case of
the SU(N) systems with m electrons satisfying the specific
combination such that m/N = (2n + 1)/4 for n = 0 and 1,
the cosine factor cos 2δ0 in Eq. (32) amounts to nullifying
the whole expression. For these specific systems, the beyond
Hartree contribution to the self-energy becomes zero, while
the corresponding Hartree contribution remains finite. In ad-
dition, for PH-symmetric SU(N) Kondo effects the Hartree
contribution vanishes and the beyond Hartree contribution be-
comes finite. Interestingly, the PH-asymmetric SU(4) Kondo-
correlated systems offer a vanishing non-Hartree contribu-
tion to the self-energy. Since the Hartree contributions can
be straightforwardly accounted for by including them in
the phase shift, the beyond-half filled SU(4) systems can
be exactly solved within cubic response and even beyond.
This paradigmatic simplification is also applicable for some
SU(12) generalizations. From Eq. (23) we obtained two
nonzero cubic response coefficients L 3

1 (4, 1) and L 12
12 (4, 1)

contributing to the charge current of the beyond-half filled
SU(4) Kondo impurity as

J (4, 1)|cubic = L 3
1 (4, 1)(�V )3 + L 12

12 (4, 1)�V (�T )2.

FIG. 4. Left panel: Lines of zero charge currents in a single-
electron SU(4) Kondo impurity within the cubic response level
of calculations. The temperatures of the left and right reservoirs
(normalized with corresponding Kondo temperature) are varied for
a given asymmetry parameter at fixed voltage drop �V = 0.05.
Right panel: The Seebeck coefficients as a function of asymmetry
parameter with beyond half-filled SU(4) Kondo effects for fixed
voltage drop �V = 0.05.

Here the transport coefficients are

L 3
1 (4, 1) = −1−3C2

9
√

π

�[1/4]

�[3/4]
,

L 12
12 (4, 1) = −C 2π2

9
√

π

�[1/4]

�[3/4]
.

These equations show that for the perfectly symmetrical
single-electron SU(4) Kondo setups, the effects of voltage bias
and temperature gradient are not correlated even in the cubic
response level of calculations. Therefore, only the asymmetry
can derive these systems to have a combined interplay of
voltage bias and temperature gradient. The effects of the
asymmetry parameter on the Seebeck coefficient in the cubic
response level of calculations are presented in Fig. 4 with
an example of single-electron SU(4) Kondo effects. From
Fig. 4 it is seen that with the proper choice (positive value)
of asymmetry parameter C the nonlinear Seebeck coefficient
gets significantly enhanced over the corresponding perfectly
symmetrical coupling. This effect is associated with strong
asymmetry of the beyond linear response transmission coef-
ficient (18).

Finally we want to mention that the nonlinearly also has
been studied by generalizing the definition of the Seebeck
coefficient with constant current condition [64–66] such that

S (N, m) = ∂J (N, m)

∂�T

/
∂J (N, m)

∂�V
. (51)

In the linear response level of calculation the response co-
efficient defined in Eq. (51) coincides with the Seebeck co-
efficient given by Eq. (34). Though their behaviors in the
nonlinear regime are quite different, it has been argued that
the coefficient S is indeed experimentally accessible [64]
and can provide an important ingredient for the propose of
temperature sensing. These effects already have been studied
in the conventional SU(2) Kondo regime accounting for the
linear response of temperature gradient and finite voltage
bias [64,65]. The central result of the paper expressed in
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Eq. (36) paves a straightforward way of extending their study
with an account of strong nonlinearity in a more exotic
Kondo-correlated system.

V. CONCLUSIONS

We developed a theoretical framework based on a lo-
cal Fermi-liquid theory in combination with the out-of-
equilibrium Keldysh approach to study the influences of cou-
pling asymmetry on the thermoelectric transport of a strongly
coupled SU(N) Kondo impurity. While the linear response
Seebeck coefficient is independent of coupling asymmetry,
the fundamental role of nonlinearity towards the enhancement
of the Seebeck coefficient with a SU(N) Kondo setup is ex-
plored. In addition, we reported the great enhancement of the
Seebeck coefficient of Kondo impurities by properly tailor-
ing the coupling asymmetry. We explored the importance of
potential scattering on the thermoelectric characterization of

PH-symmetric SU(N) Kondo effects. The presented analytical
expressions of asymmetry-dependent transport coefficients
for the general SU(N) Kondo effects allow us to make a close
connection of our findings with the experimentally studied
SU(2) and SU(4) Kondo effects in complex QD nanostruc-
tures. Application of a developed theoretical framework for
the investigation of thermoelectric properties of more exotic
Kondo problems such as multistage and multiterminal Kondo
screening appears to be a valid avenue for future research.
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